
Brasil

Basic Resource Aggregation System Infrastructure Layer

Eric Van Hensbergen
IBM Research

bergevan@us.ibm.com

Pravin Shinde
ETH Zurich

shindep@student.ethz.ch

Noah Evans
Alcatel-Lucent Bell Labs

npe@plan9.bell-labs.com

ABSTRACT
Brasil is a self-contained service which can be deployed across
a cluster to provide a dataflow workload distribution and
communication aggregation mechanism. Together with our
dataflow shell, named PUSH, it is intended to be used for
the management of non-traditional super computing appli-
cations as well as provide a mechanism to manage in-situ
analysis and vizualization of more traditional high perfor-
mance computing simulations. This paper describes our ex-
periences implementing and deploying a prototype of Brasil
on a BlueGene/P supercomputer.

1. INTRODUCTION
The deluge of huge data sets such as those provided by

sensor networks, online transactions, and petascale simula-
tion provide exciting opportunities for data analytics. The
scale of the data makes it increasingly difficult to process
in a reasonable amount of time on isolated machines. In
the near future petascale and exascale simulation will make
the involvement of secondary storage and disks impractical,
driving the need for infrastructures which provide in-situ
analytics and visualization capabilities [8].

This has lead to data flow systems emerging as the stan-
dard tool for solving research problems using these vast
datasets. In typical dataflow systems, runtimes [3] [1] [7]
define graphs of processes, the edges of the graphs repre-
senting pipes and their vertices representing computation
on a system. Within these runtimes a new class of lan-
guages [10] [12] [9] can be used by researchers to solve ”pleas-
antly parallel” problems (problems where the individual el-
ements of datasets are considered to be independent of any
other element) more quickly without worrying about explicit
concurrency.

These languages provide automated control flow(typically
matched to the architecture of the underlying runtime) and
channels of communication between systems. In existing
systems, these workflows and the underlying computation
are tightly linked, tying solutions to a particular runtime,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ROSS ’11, May 31, 2011, Tucson, Arizona, USA
Copyright 2011 ACM 978-1-4503-0761-1/11/05 ...$10.00.

workflow and language. This creates difficulties for analytics
researchers who wish to draw upon tools written in many
different languages or runtimes which may be available on
several different architectures or operating systems.

Our experiences with existing tools for constructing work-
flows for simulation, transformation, analysis and visualiza-
tion were frustrating. This was primarily due to the tight
coupling of language, runtime, and workflow tools which
proved difficult to integrate with existing applications. We
also found many of these systems difficult (if not impossible)
to deploy on petascale clusters, particularly those with dy-
namic resources such as clouds where nodes might be added
or removed based on load, failure, or different system prior-
ities.

We observed that UNIX pipes were perfectly designed to
allow developers to hook together tools written in different
languages and runtimes in ad-hoc fashions. This allowed
tool developers to focus on doing one thing well, and enabled
code portability and reuse in ways not originally conceived
by the tool authors. The UNIX shell incorporated a model
for tersely composing these smaller tools into pipelines (e.g.
’sort | uniq -c’), creating a coherent workflow to solve more
complicated problems quickly. Tools read from standard
input and wrote to standard output, allowing programs to
work together in streams with no explicit knowledge of this
chaining built into the program itself.

One to one pipelines such as those used by a typical UNIX
shell, can not be trivially mapped to streaming workflows
which incorporate one-to-many, many-to-many, and many-
to-one data flows. UNIX shell pipelines are strictly local,
so while they can be used in conjunction with distributed
system tools such as ssh, they do not themselves naturally
facilitiate networked operation. Additionally, typical UNIX
pipeline tools write data according to buffer boundaries in-
stead of record boundaries.

To address these issues we have implemented a proto-
type shell, which we call PUSH, using dataflow principles
and incorporating extended pipeline operators to establish
distributed workflows —potentially running on clusters of
machines— and correlate results. In order to scale this ap-
proach to large clusters of servers we implemented a work-
load and resource distribution infrastructure which incor-
perated dataflow communication constructs which we call
Brasil.

The rest of this paper is focused on describing the design
and implementation of Brasil. The next section covers some
additional details of the PUSH shell and describes some of
the key design elements of Brasil motivated by it. Section

73

3 discusses our prototype implementation in more detail in-
cluding lessons learned while attempting to scale the proto-
type to thousands of cores. Section 4 contains our evaluation
of the overhead of the infrastructure when deployed on lead-
ership class high-performance computing environments. In
Section 5 we will conclude by discussing potential improve-
ments to address the overheads and explore opportunities
for improvement in both the design and implementation of
our approach.

2. DESGIN
The PUSH shell is a conventional UNIX shell with two

additional pipeline operators, a multiplexing fan-out(|<[n]),
and a coalescing fan-in(>|). This combination allows PUSH
to distribute I/O to and from multiple simultaneous threads
of control. A fan-out argument, n, specifies the desired de-
gree of parallel threading. If no argument is specified, the de-
fault of spawning a new thread per record (up to the limit of
available cores) is used. This can also be overriden by com-
mand line options or environment variables. The pipeline
operators provide implicit grouping semantics allowing nat-
ural nesting and composibility. While their complimentary
nature usually lead to symmetric mappings (where the num-
ber of fan-outs equal the number of fan-ins), there is nothing
within our implementation which enforces it. Normal redi-
rections as well as application specific sources and sinks can
provide alternate data paths.

shell

command
Pipe Multiplexor

Pipe

Pipe

Pipe

Pipe

Pipe

Pipe
shell

command

shell

command

shell

command

shell

command

shell

command

shell

command
Pipe

Pipe

Pipe

Pipe

Pipe

Pipe

Demultiplexor Pipe
shell

command

Figure 1: The structure of the PUSH shell

PUSH also differs from traditional shells by implement-
ing native support for record based input handling over
pipelines. This facility is similar to the argument field sepa-
rators, IFS and OFS, in traditional shells which use a pattern
to determine how to tokenize arguments. PUSH provides
two variables, ORS and IRS, which point to record separa-
tor modules. These modules (called multiplexors in PUSH)
split data on record boundaries, emitting individual records
that the system distributes and coalesces. The choice of
which multipipe, an ordered set of pipes, to target is left as
a decision to the module.

Different data formats may have different output require-
ments. Demultiplexing from a multipipe is performed by
creating a many to one communications channel within the
shell. The shell creates a reader processes which connects to
each pipe in the multipipe. When the data reaches an appro-
priate record boundary a buffer is passed from the reader to
the shell which then writes each record buffer to the output
pipeline.

An example from our particular experience, Natural Lan-
guage Processing, is to apply an analyzer to a large set of
files, a ”corpus”. User programs go through each file which
contain a list of sentences, one sentence per line. They then

tokenize the sentence into words, finding the part of speech
and morphology of the words that make up the sentence.
There are a large number of discrete sets of data whose order
is not necessarily important. We need to perform a compu-
tationally intensive task on each of the sentences, which are
small, discrete records an ideal target for parallelization.

PUSH was designed to exploit this mapping. For example,
to get a histogram of the distribution of Japanese words from
a set of documents using chasen, a Japanese morphological
analyzer, we take a set of files containing sentences and then
distribute them to a cluster of machines on our network. The
command is as follows:

ORS=blm find . -type f |< \\

xargs chasen | sort | uniq -c >| sort -rn

The first variable, ORS, declares our record multiplexor
module, the intermediary used to ensure that the input and
output to distributed pipes are correctly aligned to record
boundaries. In many cases a default which splits based on
atomic writes can be used. Alternatively one of several built-
ins which split based on a field separator or newline can be
used.

find . -type f gives a list of the files which are then ”fanned
out”(|<) using a combination of a multipipes, and a mul-
tiplexor which determines which pipes are the targets of
each unit of output. This fanned out data goes to xargs
on new threads which then uses the filenames as arguments
to chasen. The find acts as a command driver, fanning out
file names to the individual worker machines. The workers
then use the filenames input to xargs, which uses the input
filenames as arguments to the target command. Using the
output of the analyzer (Japanese words) are then sorted and
counted using uniq. Finally these word counts are ”fanned
in”(>|) to the originating machine which then sorts them.

While PUSH works perfectly well on a stand-alone ma-
chine, the original intent was to use it to drive workloads
and workflows across a cluster of machines. In particular,
we were interested in deploying on leadership class high per-
formance computing machines and as such a key requirement
for us was scalability to a large number of nodes. Instead of
traditional client/server models we opted for a peer based
model where every node within the system is capable of
initiating new workflows of computation and managing the
newly created pipeline. This allows workflows and compo-
nent applications to initiate new branches of computation
or analysis at any stage of the pipeline or in reaction to
data produced by a previous portion of the pipeline giving
the entire infrastructure a degree of elasticity that seemed
to be missing from previously available tools. In order to
accomplish this we designed the system without any central
component which required knowledge of the entire system.
All knowledge is distributed and then aggregated at certain
points. Descisions like scheduling and job management are
also made in a distributed fashion, utilizing the hierarchy of
aggregation points to eliminate the need for all-to-all com-
munication during workload distribution.

In order to scale such a system we decided to go with a
hierarchical organization of nodes. Aggregation points scale
command and communication between nodes. When a node
or its children have insufficient resources to satisfy a request,
the request is propagated to the parent aggregation point.
This form of hierarchical aggregation also seems to map well
with the physical topology of many leadership class systems.

74

The hierarchical topology not only helps scale communica-
tion and control, but it also can help users and application
components traverse multiple network domains in a seamless
fashion. We intend to use this property to create an environ-
ment which seamlessly extends the user’s desktop experience
and environment to the supercomputer.

The forms of communication aggregation match the new
pipeline primatives which are part of the PUSH shell. By
default, input to each master pipeline component thread is
fanned out to sub-session threads and output from those
sub-sessions in fanned back into the master component. It
is intended that this behavior be setup and controlled by the
Brasil infrastructure which spawns the sub-session threads
(whether they be local or remote). For multi-stage pipelines,
we need the ability to direct the output of a pipeline com-
ponent to another pipeline component without necessarily
passing that data through the master thread (for efficiency
reasons). In order to accomplish that we’ve added the ability
to splice input or output of individual subsessions threads
to eachother.

3. IMPLEMENTATION
This section describes the internals of the implementation

in more detail. It is important to remember that these de-
tails are entirely hidden by the PUSH shell so users and their
applications are never really exposed to the complexity ex-
pressed herein. It is possible to provide alternate front-ends
to the underlying Brasil infrastructure and applications may
choose to interact directly with it and its control interfaces,
but it is not expected that this will be the default mode of
operation.

3.1 Interface
The external interface to our infrastructure is a synthetic

file system much like the interface to the Xcpu [6] workload
distribution system. Figure 2 gives the the high-level view
of the hierarchy of the Brasil namespace.

 arch

/local

 env
 ns
 fs
 net
 status
 clone
 /0
 /1

 /n

 ctl
 env
 ns
 args
 wait
 status
 stdin
 stdout
 stdio

 /0
 /n
 ctl
 env
 ns
 args
 wait
 status
 stdin
 stdout
 stdio

 /0
 /n

 /n

Local Resources Session Sub-Session

Figure 2: Filesystem interface in Brasil

Each node in the system has a local directory in the root
of their namespace which contains pointers to the resources
available on the node and control files which allows man-
aging jobs deployed on the node. A few files here provide

information about the system, like the [arch] file which tells
the architecture and operating system of the node while the
[status] file provides information about total amount of re-
sources currently available, including the remote resources
which are directly or indirectly decedents of this node. Files
like [env] and [ns] allow controlling the default environ-
ment and the namespace of the processes created on this
node. [fs] and [net] are links to the local filesystem and
networking resources available on the node. The [clone]

file provides the interface to create new sessions which is the
unit of the workload management.

The sessions are represented as directories with the session-
id number as the directory name. Each directory is self-
contained and provides interfaces to manage the execution
of the session. Files like [env] and [ns] are present in the
session directory also, and can be used to overwrite the de-
fault environment and namespace specifically for this ses-
sion. The [ctl] file is used for controlling the execution
and the [stdio] file is used to manipulate standard input
and output.

Since sessions themselves can have children, each session
directory may have subsession directories with similar files.
The files at the session directory level provide the aggregate
interfaces to the sub-session directory.

3.2 Brasil
The core of Brasil is a self-contained daemon which is

based on a fork of Inferno [4]. Inferno is an open source
distributed operating system which is a direct descendant
of the Plan 9 operating system [11]. It runs natively on
multiple hardware platforms and can also run as a user-
space application on top of other operating systems. Brasil
is based on the hosted version of the Inferno platform.

The Brasil namespace is exported using the 9P protocol.
This protocol is used by Plan 9 and Inferno extensively to
access any file. Recently the Linux kernel has added support
for the 9P protocol[5]. This allows Linux to mount filesys-
tems exported over the 9P protocol. Other Unix based op-
erating systems can use FUSE for accessing the 9P based
filesystems.

The applications interact with this mounted Brasil filesys-
tem using the native filesystem interfaces (e.g. VFS for
Linux). Any interaction with this Brasil filesystem is com-
municated to Brasil using 9P. If needed, it uses services from
the host operating system or from other Brasil filesystems
deployed on remote locations. The Brasil filesystem then
sends the prepared response over 9P. The host operating
system will relay this response back to the application via
the local filesystem interface.

3.3 Central Services
The ability to configure many Brasil nodes into hierarchy

is provided by the central services. Contrary to the name,
central services is highly distributed and every Brasil runs
an independent instance of the central services.

The central services synthetic file server which provides
a simple hierarchy of directory mount points representing
remote nodes. Mounts of the remote nodes or binds of pre-
viously mounted remote nodes are accomplished within this
file system such that anyone who mounts our namespace
can also see (and access) anyone we have mounted tran-
sitively, in such a way a child node can access a parent
nodes, other children, or the parents nodes parent and so

75

forth. Any node could establish themselves within a hi-
erarchy by binding a parent’s central service directory to
the name [/csrv/parent] and then tell the parent to back-
mount their name space (allowing two way traversal). In
this way children register with parents triggering the cross-
mounts and establishing a two way link between them. Each
Brasil instance needs only to know the information about its
parent and children in the hierarchy and all Brasil nodes ini-
tiate these connections leading to the distributed creation of
the Brasil node hierarchy.

Figure 3 tries to give a simple overview of how this syn-
thetic filesystem view is populated based on the underlying
mount connections between the nodes.

 /local

/csrv

 /L

 /local
 /l1

 /local
 /c1

 /local
 /c2

 /local
 /l2

 /local
 /c3

 /local
 /c4

 /local

 /local

/csrv

 /parent (l2)

 /local
 /c4

 /local
 /parent (L)

 /local
 /l1

 /local
 /c1

 /local
 /c2

 /local
 /parent (t)

 /local

App-1 view App-2 view

t

L

l1 l2

c1 c2 c3 c4

App-1

App-2

Figure 3: Sample filesystem interface for sample the
topology in Brasil

Assuming the links between the nodes are created by the
remote node mounts in central services, this diagram shows
how the filesystem views at different nodes encompasses the
whole network, even though each node is only connected
to its neighbours. The Brasil filesystem starts with the
[/csrv] directory. The location [/csrv/local/] presents
the local resources whereas [/csrv/parent/] presents the
Brasil filesystem of the parent node. All other directories in
the represents the Brasil filesystem of the children nodes. It
can be easily seen that both App-1 and App-2 have access
to all the nodes even though they are running on different
nodes. In this design, every node has to worry about only
its children and the parent, other topology falls into place
automatically.

Just because every node can construct the global view,
does not mean that it must use this global view for making
any decision or performing a typical operation. The nodes
mostly use only the local view for decision making and op-
erations. This local view includes the parent node and the
children nodes.

3.4 Examples
While the PUSH shell handles much of the complexity of

interacting with the Brasil infrastructure, it is useful to see
examples of how it interacts with the underlying infrastruc-
ture in order to understand the various mechanisms better.
These examples are given from the perspective of directly in-
teracting with the infrastructure file systems from a normal

UNIX shell.
The first example presents how the default aggregation

behaviour of Brasil can used to deploy large number of ap-
plications.

$ less ./mpoint/csrv/local/clone

0

The above command is an example of creating a new ses-
sion. The contents read from the [clone] file represent the
session-ID. Now we use session 0 for performing actual exe-
cution.

$ echo "res 4" > ./mpoint/csrv/local/0/ctl

$ echo "exec date" > ./mpoint/csrv/local/0/ctl

$ cat ./mpoint/csrv/local/0/stdio

Fri May 7 13:53:58 CDT 2010

Fri May 7 13:53:58 CDT 2010

Fri May 7 13:53:58 CDT 2010

Fri May 7 13:53:58 CDT 2010

$

The first echo command sends the request for reserving 4
remote resources. The next echo command submits the re-
quest for executing the date command. And the cat com-
mand on [stdio] returns the aggregated output to the user.
This example shows all the complexities about finding, con-
necting and using the remote resources is hidden behind the
filesystem interface. This approach can be used in the triv-
ially parallelizable applications where the same application
is deployed on all the nodes.

When constructing more complicated dataflow pipelines,
Brasil handles reserving the resources and setting up the
pipe endpoints of the pipeline components. Instead of in-
teracting with the aggregation points, dataflow applications
(such as the PUSH shell) can interact directly with the sub-
sessions responsible for each pipeline component.

In this example, we will try to create a small pipeline of
two commands date | wc. But we will create this pipeline
across multiple nodes.

Lets assume that session 0 is created by opening [clone]

file as shown in the previous example. The following com-
mands will create the desired pipeline.

$ echo "res 2" > ./mpoint/csrv/local/0/ctl

$ echo "exec date" > ./mpoint/csrv/local/0/0/ctl

$ echo "exec wc" > ./mpoint/csrv/local/0/1/ctl

$ echo "xsplice 0 1" > ./mpoint/csrv/local/0/ctl

$ cat ./mpoint/csrv/local/0/1/stdio

1 6 29

$

The first command [exec date] is sent to 0’th sub-session
and the second command [exec wc] is sent to the 1st sub-
session. The [xsplice 0 1] request tells the parent session
to redirect the output of the 0’th session to the input of the
1st session. The xsplice command can be seen as a pipe
operator of the shell script for redirecting the output of one
command to the input of other command.

The above example is equivalent of executing date | wc

on the shell, but with the difference that both commands
are executed on a different remote machines while sharing
the same namespace.

76

4. OVERHEAD EVALUATION
In order to assess the overhead of our execution deploy-

ment and communication mechanisms at scale, we deployed
our infrastructure on a BlueGene/P system with resources
provided by the Department of Energy’s INCITE program.
For the purposes of our initial prototype we limited our eval-
uation to a BlueGene/P configuration with only 512 nodes
(comprising 2048 cores). We run Brasil on the PowerPC
Linux based controller node and on the Plan 9 based I/O
and Compute nodes. The user interacts with the Brasil in-
stance via shell scripts which interact with file system inter-
faces exported by Brasil and mounted under linux with the
v9fs file system.

4.1 Execution
Our first objective is to meaure the overhead of deploy-

ment and execution of pipeline components as the number
of components increases. Since we are only interested in the
overhead of deployment we chose to execute the date com-
mand as our example pipeline component. This is a small
application which does not require any external inputs and
produces small output. While this is hardly a characteristic
workload, its short execution and minimal requirements will
give us a better sense of the latency overheads of the infras-
tructure versus measuring the performance of any particu-
lar applicaiton. Each deployment involves session creation,
reservation, execution, output aggregation and termination.

Figure 4 gives an initial perspective of how Brasil performs
relative to sequential performance. This graph plots the to-
tal time taken by Brasil and the hypothetical time it may
take for performing the same amount of work on one ma-
chine. This graph shows that the Brasil is successfully able
to exploit the parallelism for deploying the jobs quickly. The
Brasil deploys 2048 jobs in 12.66 seconds whereas sequential
execution would take upto 510 seconds. In the graph, the
line showing sequential scaling looks exponential, but that is
because number of requested executions increase exponen-
tially.

Next, we take a closer look by instrumenting the various
stages of application execution to determine the overheads
of each:

1. Reservation: Create a new session, and request the
reservation by writing res n into the session [ctl]

file. Here n varies from 1 to 2048 representing the
number of executions requested.

2. Execution: Request the execution by writing exec date

into the session [ctl] file.

3. Aggregation: Collect the output generated by all the
executions by reading the session [stdio] file.

4. Termination: Closing all the files and terminating the
session.

5. Housekeeping: Additional time taken before, between
and after above steps.

Every deployment starts with the creation of the session
followed by the reservation, execution, aggregation and then
ending with termination of the session. We have taken the
average value over multiple runs for our analysis.

Figure 5 presents the results of deployment of the date
command in the form of graph. This graph presents the

breakup time for various stages of the deployment using the
Brasil infrastructure.

From this graph we can observe that the session termi-
nation and the housekeeping overheads are negligible com-
pared to the time taken by reservation, execution and aggre-
gation. So, we can ignore these two overheads in our future
evaluations. For jobs of up to 128 deployments, the reser-
vation time dominates everything else. But for larger num-
bers of deployment execution and aggregation time increases
rapidly while reservation time remains relatively constant.
This shows that reservation time is not directly dependent
on the number of deployments, whereas execution and ag-
gregation time are directly proportional to the number of
deployments.

Now, let us try to analyze why reservation time is indepen-
dent of the number of deployments. The reservation process
involves traversing the underlying topology tree of nodes till
the reservation requirements are satisfied. All the children
on the same level are traversed in parallel. This way, each
level is traversed in constant time, independent of the num-
ber of nodes in that level. Another aspect of the reservation
mechanism which helps here is that the amount of data writ-
ten and read from the [ctl] file and the amount of data
exchanged between nodes for communicating the reserva-
tion request is fixed in size and independent of the number
of deployments requested. With these two properties, the
reservation time becomes directly proportional to the depth
of the tree and not with the number of nodes.

We can observe the above relation in figure 5. The reser-
vation time remains relatively constant for deployment re-
quests from 1 to 8. Then it sharply increases between 8 to
16 and remains almost constant for all the requests between
16 to 2048. This can be attributed to underlying cluster
topology. Our experimental setup used 8 IO nodes as aggre-
gation points in the first level. This enables satisfying the
requests which are smaller than 8 executions. For larger re-
quests, one more level needs to be traversed in the topology,
introducing delays. The time taken for reservation remains
almost constant between 16 and 2048 executions as all these
reservation requests essentially traverses the same depth.

Now let us discuss why the same property is not exhibited
by execution time or aggregation time. We have discussed in
the implementation chapter that all read and write requests
are performed in parallel between all the nodes in the same
level. But the amount of data exchanged for aggregation and
execution is not constant. This data is directly proportional
to the number of nodes involved. With the increase in the
number of requested deployments, the amount of data to
be exchanged also increases, leading to larger aggregation
time. The execution time is similarly affected as all compute
nodes will try to fetch the binary of the executable from
the initiating node leading to the copy of the data. These
observations lead us to to conclusion that the time taken for
the execution and aggregation is directly proportional to the
number of deployments requested.

Our next evaluation involve the deployment of an exe-
cutable wc which needs input. This command counts the
number of lines, words and characters in the input file. This
is an interesting case for our infrastructure as this deploy-
ment involves the distribution of inputs to all the sessions.
This introduces a new stage in the deployment process in
addition to the 5 stages we described in the above section.
This stage will be the input stage and involves distributing

77

1 2 4 8 16 32 64 128 256 512 1024 2048

0

100

200

300

400

500

600

Comparision of Linear deployment and XCPU3 deployment

XCPU3
Linear

Number of executions requested

T
im

e

Figure 4: Comparison if Brasil with sequential deployment

1 2 4 8 16 32 64 128 256 512 1024 2048

0

2

4

6

8

10

12

14

Simple Job deployment
without input (date)

512 nodes

Housekeeping
Termination
Aggregation
Execution
Reservation

Number of executions Requested

Ti
m

e

Figure 5: Deployment without input

78

 1 2 4 8 16 32 64 128 256 512 1024 2048

0

2

4

6

8

10

12

14

16

18

20

Job Deployment
with input (wc)

512 nodes

Housekeeping
Termination
Aggregation
Input
Execution
Reservation

#jobs

Ti
m

e

Figure 6: Deployment with input

the input data to all the sessions which are responsible for
execution. As mentioned previously, Brasil will broadcast
the input to all the compute nodes.

Figure 6 presents the results of evaluations involving the
distribution of the input.

These results enforce our observations that reservation
time is directly proportional to the the depth of the tree
whereas aggregation and execution time are directly propor-
tional to the number of deployments requested. In addition
to these observations, we can also observe that the input
aggregation time exhibits behavior similar to the execution
and aggregation time. This observation can be attributed
to the fact that input distribution implementation is similar
to the output aggregation implementation.

5. DISCUSSION
While our initial experiences with using Brasil to deploy

workloads was positive, we found several areas for improve-
ment in both the design and implementation of the infras-
tructure.

One systemic flaw involved the design decision to give the
PUSH shell responsibility for orchestrating record seperation
and multiplexing. In enviornments with a lot of communi-
cation adding additional components to the I/O processing
pipeline increases overhead due to increased data copying
and context switching. By moving record seperation into the
infrastructure itself (particularly for common default cases)
we can eliminate a pipeline stage (two copies and two con-
text switches). By moving multiplexor functionality into the
infrastructure we remove an additional pipeline stage (two
copies and two context switches). This reduces the overhead
of interacting with the infrastructure from 6 copies and con-
text switches down to 2. Taking advantage of techniques

such as Willem de Bruijn’s Beltway Buffers [2] may reduce
this even further.

Another unforseen performance problem was caused by
the overhead incurred by the transitive mount methodology
of central services. While elegant, it introduces overhead
at each transitive mount point. As such, deep hierarchies
and large scale workloads can involve many transitive hops
for every communication which introduces latency and load
across the system. We have identified the need to augment
our hierarchical aggregation (which works well for fan-out
and fan-in) with cut-through models of communication for
data-flow operations. There may also be opportunities to
leverage the collective network capabilities of high perfor-
mance systems such as BG/P to further optimize aggregate
communication behavior.

While fan-in and fan-out aggregation models do match
a large class of use-cases we quickly found outselves want-
ing more primitives to support deeper pipelines and more
complex workflows. In addition to the two existing ex-
tended pipes we identified the need for deterministic deliv-
ery to/from a particular endpoint as well as many-to-many
multipipes. We also quickly found the need to incorporate
some form of synchronization into the infrastructure and
even came up with ways of doing MPI-style collective oper-
ations using abstract pipeline constructs.

A key failure of our implementation is that it not only
lacked fault tolerance, it lacked good methods of identi-
fying where in a distributed pipeline failures actually oc-
curred. Early debugging was plagued with workflows which
would just hang waiting on input or waiting to give output.
The multi-stage pipelines present within each PUSH pipeline
component further complicated this. Part of these problems
are inherent in the way traditional UNIX pipelines work,

79

but we are now experimenting with ”rejoinable” pipelines,
task-based workqueue models, and looking into opportuni-
ties for pipeline based work-stealing and failover in order to
alievate workflow stalls. Additionally, we are adding new
out-of-band logging and error reporting mechanisms which
attach at the same points as the I/O pipelines, but are used
by the infrastructure to communicate failures.

Early on we had a lot of trouble with stalling due to try-
ing to perform dataflow operations in a synchronous man-
ner. We later decoupled these operations into asynchronous
threads within Brasil, but this introduced a number of race
conditions which made traditional pipe semantics difficult to
maintain. We are left with the opinion that the only way to
successfully implement multipipe semantics is to introduce
control sequences to the pipelines to assist with identifica-
tion of when communication begins and ends. This detracts
from the elegance of pipeline based solutions, but it also pre-
vents a host of race conditions and spurious failures. The
good thing is that the complexity of dealing with these out
of band control messages is hidden entirely within the in-
frastructure, hiding the details from the end user.

In addition to the design and implementation flaws men-
tioned above we realized there were several missed opportu-
nities in the approach we took with our initial prototype. As
mentioned in the evaluation section, one of the larger com-
ponents of execution time is the loading of the application
binary over the distributed file system. Given the hierarchi-
cal aggregation of the infrastructure we should be able to
provide more efficient access to binary files and libraries. A
straightforward approach is to provide cache capabilities at
aggregation points, but a more aggressive concept is to in-
corporate the idea of collective file system pre-fetching based
on session behavior utilizing underlying interconnect hard-
ware features. Regardless of implementation, we’d like to
hook distributed file system semantics and capabilities in
more tightly with the infrastructure in the future.

Another set of features we overlooked in our initial im-
plementation was adding capabilites which facilitated more
dynamic behavior within sessions or within the infrastruc-
ture itself. In future implementations we plan to have a
more seamless approach to nodes entering and leaving the
infrastructure, which should enable cloud deployments and
also ease issues with fault tolerance. In addition to dynamic
behavior of the infrastructure, we also want to better sup-
port dynamic behavior within the workflow. The existing
infrastructure supports spawning new workflows within the
cluster as part of a workflow, but it would also be nice for
workflows to be able to dynamicly request and release re-
sources from their own workflow based on workload phase
or dependencies within the data stream.

The experience of implementing the Brasil infrastructure
made it clear to us that the key concept at the core of PUSH
and Brasil was that of the multipipe. While we originally
only used multipipes as the basis for implementing the com-
munication aggregation primitives, it became clear to us
that with a few extensions we could reimplement the control
plane and monitoring subsystems in terms of multipipes as
well. Given the general usefulness of the multipipe construct
we feel it may be a reasonable candidate for addition to the
core operating system instead of just being part of a service
daemon. As such we are currently investigating implementa-
tions which add multipipes as a core system primitive to the
Plan 9 and Linux operating systems and reimplementing the

Brasil infrastructure using the new core system primitive.
Our current work as well as our past prototypes are ava-

ialble as open source via http://bitbucket.org/ericvh/hare.

6. ACKNOWLEDGEMENTS
This work was supported in part by the Department of

Energy Office of Science under award number DE-FG02-
08ER25851.

7. REFERENCES
[1] A. Bialecki, M. Cafarella, D. Cutting, and

O. O Malley. Hadoop: a framework for running
applications on large clusters built of commodity
hardware, 2005. Wiki at http://lucene. apache.
org/hadoop.

[2] Willem de Bruijn and Herbert Bos. Beltway buffers:
Avoiding the os traffic jam. In Proceedings of the
Conference on Computer Communications
(INFOCOM), 2008.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Communications
of the ACM, 51(01):7, 2008.

[4] SM Dorward, R. Pike, DL Presotto, DM Ritchie,
HW Trickey, and P. Winterbottom. The Inferno
Operating System. Bell Labs Technical Journal,
2(1):5–18, 1997.

[5] E. Van Hensbergen and R. Minnich. Grave robbers
from outer space using 9p2000 under linux. In In
Freenix Annual Conference, pages 83–94, 2005.

[6] Latchesar Ionkov, Ron Minnich, and Andrey
Mirtchovski. The xcpu cluster management
framework. In First International Workshop on Plan9,
2006.

[7] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In Proceedings of the 2007
conference on EuroSys, pages 59–72. ACM Press New
York, NY, USA, 2007.

[8] Kwan-Liu Ma, Chaoli Wang, Hongfeng Yu, and Anna
Tikhonova. In-situ processing and visualization for
ultrascale simulations. Journal of Physics: Conference
Series, 78(1):012043+, July 2007.

[9] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of
data, pages 1099–1110. ACM New York, NY, USA,
2008.

[10] R. Pike. Interpreting the data: Parallel analysis with
Sawzall. Scientific Programming, 13(4):277–298, 2005.

[11] R. Pike, D. Presotto, K. Thompson, and H. Trickey.
Plan 9 from Bell Labs. Computing Systems,
8(3):221–254, 1995.

[12] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,
P.K. Gunda, and J. Currey. DryadLINQ: A system for
general-purpose distributed data-parallel computing
using a high-level language. In Symposium on
Operating System Design and Implementation
(OSDI), San Diego, CA, December, pages 8–10, 2008.

80

